
Recognizing Handwritten Digits using Neural Network Algorithms

Michelle Kelman and Jihan Wang
The University of Texas at Dallas

800 W Campbell Rd
Richardson, TX 75080

1 Introduction
Although in recent years digital document completion has
become more common, there are still many types of docu-
ments that must be filled out by hand. This becomes espe-
cially troublesome when there are large quantities of docu-
ments to be processed such as addressed mail, bank checks,
and handwritten forms. However, machine-led handwritten
letter and digit recognition can be used to determine what is
was written and digitize handwritten text.

Problem Character classification is a difficult task since
humans have great variations in handwriting including size,
orientation, and style. Therefore, computer vision and deep
learning models (neural networks) must be used to learn pat-
terns in handwritten letters and digits. Furthermore, different
neural network activation functions classify patterns in data
differently. Our goal is to determine which common activa-
tion function best learns these patterns and correctly classi-
fies handwritten character data.

Need for Dimensionality Reduction Visualizing patterns
in the data in each layer of our neural network algorithms
aids our activation function analysis. However, the dimen-
sions of our layers are large. In order to visualize the data,
we use dimensionality reduction to represent the data in 2D
while maintaining the original data information. Dimension-
ality reduction is also a useful tool for noise reduction and
overfitting prevention.

2 Data

The Extended MNIST (EMNIST) dataset is a set of hand-
written character digits derived from the National Institute
of Standards and Technology (NIST) Special Database 19
and converted to 28x28 pixel image format. The EMNIST
Digits dataset provides balanced handwritten digit data with
a total of 10 classes (one per digit) and 280,000 samples:
240,000 samples in the train set and 40,000 samples in the
test set (Cohen et al. 2017).

3 Algorithms
Our algorithm approach includes 4 different neural network
models with 3 different activation functions, for a total of
12 considered algorithms. We also implemented 2 different
dimensionality reduction methods.

Neural Network Models
• Our implementation of a 1 hidden layer neural net-

work with 28x28 input nodes, 300 hidden nodes, 10 out-
put nodes, 1000 epochs, and a learning rate of 0.1. The
number of hidden nodes was chosen based on the princi-
ple that the ideal number of nodes is approximately the
average number of input and output nodes (Nielsen 2019)
(Yousaf 2019) (Paudel 2020).

• Our implementation of a 1 hidden layer neural net-
work with Principle Component Analysis (PCA).

• Scikit-Learn Neural Network MLPClassifier() with the
same parameters as above and the weight optimizer set to
stochastic gradient descent. Although the same parame-
ters were used, the final model is expected to perform bet-
ter than our implementation due to additional optimiza-
tion features.

• Keras Convolutional Neural Network with 3 2D con-
volution layers, 3 pooling layers, and 3 dense layers. This
model was included in our analysis is to determine if acti-
vation functions affect different types of neural networks
similarly (DataFlair 2020).

Activation Functions
• Logistic (sigmoid) activation function
• ReLU (rectified linear unit) activation function
• Hyperbolic tangent (tanh) activation function

Dimensionality Reduction Methods
• Our Principal Component Analysis (PCA) algorithm

with 784 total features linearly projected to 2 dimensions
for visualization purposes and 549 dimensions (70% of
the original dimensions) for testing the effect of dimen-
sion reduction (Maćkiewicz and Ratajczak 1993).

• Our t-Distributed Stochastic Neighbor Embedding (t-
SNE) with 2 dimensions for visualization purposes and
using the first 10,000 samples of the data set for testing
due to RAM limitations (Maaten and Hinton 2008).



(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 1: Confusion Matrices for 1 hidden layer neural network

Activation 1 Hidden Layer Neural Network

Function TPR FPR Precision Recall F1 AUC for ROC Accuracy

Logistic 0.90368 0.01070 0.90379 0.90368 0.90360 0.89371 0.90368

ReLU 0.92145 0.00873 0.92227 0.92145 0.92154 0.90138 0.92145

Hyperbolic Tangent 0.90850 0.01017 0.91030 0.90850 0.90865 0.89140 0.90850

Table 1: Average Evaluation Metrics for 1 hidden layer neural network

(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 2: Confusion Matrices for 1 hidden layer neural network with PCA processed input

Activation 1 Hidden Layer Neural Network(PCA processed)

Function TPR FPR Precision Recall F1 AUC for ROC Accuracy

Logistic 0.90063 0.01104 0.90047 0.90163 0.90040 0.89049 0.90063

ReLU 0.92810 0.00799 0.92822 0.92810 0.92808 0.91317 0.92810

Hyperbolic Tangent 0.87685 0.01368 0.87754 0.87685 0.87643 0.87620 0.87685

Table 2: Average Evaluation Metrics for 1 hidden layer neural network with PCA processed input



(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 3: Confusion Matrices for Scikit-Learn neural network

Activation Scikit-Learn Neural Network

Function TPR FPR Precision Recall F1 AUC for ROC Accuracy

Logistic 0.98417 0.00176 0.98419 0.98417 0.98418 0.99979 0.98418

ReLU 0.98528 0.00164 0.98529 0.98528 0.98528 0.99978 0.98528

Hyperbolic Tangent 0.98335 0.00185 0.98336 0.98335 0.98335 0.99978 0.98335

Table 3: Average Evaluation Metrics for Scikit-Learn neural network

(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 4: Confusion Matrices for Keras CNN

Activation Keras Convolutional Neural Network

Function TPR FPR Precision Recall F1 AUC for ROC Accuracy

Logistic 0.97935 0.00229 0.97950 0.97935 0.97932 0.98853 0.97935

ReLU 0.98568 0.00159 0.98575 0.98568 0.98568 0.99204 0.98567

Hyperbolic Tangent 0.98208 0.00199 0.98211 0.98208 0.98207 0.99004 0.98207

Table 4: Average Evaluation Metrics for Keras CNN



(a) PCA Visualization (b) t-SNE Visualization

Figure 5: PCA and t-sne Processed Visualizations of Input Layer

(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 6: PCA Processed Visualizations of Hidden Layer

(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 7: PCA Processed Visualizations of Output Layer

(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 8: t-sne Processed Visualizations of Hidden Layer

(a) Logistic Activation Function (b) ReLU Activation Function (c) Hyperbolic Tangent Function

Figure 9: t-sne Processed Visualizations of Output Layer



4 Results
To analyze the performance of each activation function, we
evaluated confusion matrices (by class), accuracy, true pos-
itive rate, false positive rate, precision, recall, F1 score, and
area under the ROC (AUC) for each algorithm.

For each model and activation function pair, we provided
confusion matrices and evaluation metric values. For our im-
plementations of PCA and t-SNE, we provided plots for vi-
sualizing the input, hidden, and output layers.

5 Discussion
Algorithm Analysis
Best Activation Function From analysis of the results, it
is apparent that the ReLU activation function has the best
overall scores for each evaluation metric (although there is
less than 1% difference between scores in most models).
This is expected since ReLU is the most commonly used
activation function in deep learning: ReLU has been named
computationally efficient because of its tendency to deacti-
vate specific neurons.

Worst Activation Function Although it is easy to deter-
mine that ReLU is the best activation function, it is difficult
to determine which activation function has the worst perfor-
mance as it differs for each model. Determining the least
efficient activation function requires more analysis.

Performance Comparison Overall, the ReLU activation
function yields the best performance for each model (as rep-
resented by AUC for ROC). This is once again to due the
efficiency of ReLU. However, it is interesting to note that
for the Sci-Kit learn Neural Network, the ReLU activation
function does not have the best AUC, with very small error.

Neural Network Model Analysis Since we did not per-
form extensive parameter tuning, it is difficult to analyze the
quality of our 4 models in comparison to each other. How-
ever, the Scikit-Learn neural network and Keras CNN mod-
els had the best performance of all the models and compara-
ble performance due to each other due to their unique opti-
mization features. There is a slight preference for the Scikit-
Learn model, showing that CNNs might not be suitable for
this problem, but more research is necessary.

Dimensionality Reduction Analysis
Best Dimensionality Reduction Method For visualiza-
tion, t-SNE (non-linear) has better performance than PCA
(linear) since some dimensions of the image data set can not
be compressed linearly.

Performance Analysis for PCA PCA dimensionality re-
duction on the input data reduced running time with a slight
performance compromise (less than 3.5%). Applying di-
mensionality reduction separately from training can lead to
a performance gap between the train results and test results.
Our solution projects the test set to the train set dimensions
by taking the dot product of their eigenvectors, from pro-
cessing the train set with PCA, to avoid performance loss
from dimension mismatch.

6 Conclusion
Successes in our Implementation
• With little parameter tuning, we were able to increase our

final accuracy to above 90% for most of our neural net-
work implementations. This is a good starting point for
future research to create an accurate handwritten charac-
ter classification model.

• Our neural network implementation yielded the same re-
sults as the Scikit-Learn neural network and Keras CNN
algorithms in terms of determining the best activation
function for our problem and dataset.

• PCA and t-sne are powerful visualization tools for illus-
trating relations in the data. By testing their performance
on each layer of our neural network algorithm, we prove
that these visualization approaches are practical.

• In using PCA to reduce the dimensions of the input data,
we significantly improved the running time of our models
without significant damage to performance, showing the
benefits of dimensionality reduction.

Issues with our Implementation
• There is a fairly accuracy gap between our neural net-

work implementation and the Scikit-Learn algorithm with
equivalent parameters. This was expected due to the
Scikit-Learn algorithm’s use of optimization algorithms,
however it is important to consider for future work.

• The running times of our neural network and both of
our dimensionality reduction implementations are signif-
icantly longer than the equivalent library versions.

• For t-SNE, we only tested our implementation on a subset
of the dataset (10,000 samples) due to RAM limitations.
In theory, we would have needed 179.45 GB of RAM to
process all 240,000 train samples due to the use of the
pairwise distances library function.

Future Improvements
• For our neural network implementation, we will per-

form parameter tuning with cross validation to optimize
model parameters. We will also try additional features like
stochastic gradient descent, momentum factors, weight
decay, and conjugate gradients to improve performance.

• We will implement linear algebra techniques to reduce the
space required for the intermediate t-SNE matrix so that
we can test on all samples.

• For both PCA and t-SNE, we will rebuild the program
with CUDA and use the CuPy library to exploit the per-
formance of the GPU and improve program speed.

Overall, our results show that the ReLU activation function
is optimal for future deep learning research related to the
handwritten classification problem. In addition, t-sne should
be selected as the preferred visualization method for mod-
els using non-linear data. Although there are many improve-
ments that could be made to equip this model for day-to-day
use, determining the best activation function and visualiza-
tion method will make development more efficient and give
a reliable starting point for future work.



References
Cohen, Gregory et al. (2017). EMNIST: an extension of

MNIST to handwritten letters. arXiv: 1702 . 05373
[cs.CV].

DataFlair (2020). Handwritten Character Recognition with
Neural Network. https : / / data - flair .
training/blogs/handwritten-character-
recognition - neural - network/. [Online; ac-
cessed 06-May-2023].

Maaten, Laurens van der and Geoffrey Hinton (2008).
“Visualizing Data using t-SNE”. In: Journal of Ma-
chine Learning Research 9, pp. 2579–2605. URL:
http : / / www . jmlr . org / papers / v9 /
vandermaaten08a.html.

Maćkiewicz, Andrzej and Waldemar Ratajczak (1993).
“Principal components analysis (PCA)”. In: Computers
& Geosciences 19.3, pp. 303–342. ISSN: 0098-3004.
DOI: https : / / doi . org / 10 . 1016 / 0098 -
3004(93 ) 90090 - R. URL: https : / / www .
sciencedirect.com/science/article/pii/
009830049390090R.

Nielsen, Michael (2019). Using neural nets to
recognize handwritten digits. http : / /
neuralnetworksanddeeplearning . com /
chap1.html. [Online; accessed 06-May-2023].

Paudel, Ramesh (2020). Building a Neural Network with
a Single Hidden Layer using Numpy. https : / /
towardsdatascience . com / building - a -
neural-network-with-a-single-hidden-
layer- using- numpy- 923be1180dbf. [Online;
accessed 06-May-2023].

Yousaf, Sanwal (2019). 3 layer neural network from scratch.
https://www.kaggle.com/code/sanwal092/
3-layer-neural-network-from-scratch/
notebook. [Online; accessed 06-May-2023].


